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We solve the nonlinear two-fluid Hall-Vinen-Bekharevich-Khalatnikov equations of 
motion of helium I1 for the first time and investigate the configuration of quantized 
vortex lines in Taylor-Couette flow. The results are interpreted in terms of quantities 
which can be observed by measuring the attenuation of second sound. Comparison is 
made with existing experimental results. 

1. Introduction 
Vortex line configurations have always attracted much attention and have been 

studied in a variety of superfluid systems (Donnelly 1991), ranging from simple 
equilibrium flows, such as rotating cylinders (Hall & Vinen 1956) or annuli (Bendt 
1967), to complicated turbulent pipe flows (Tough 1982; Donnelly & Swanson 1986). 
In the former systems, the methods of thermodynamics have been applied to determine 
the spatial structure of the vortices (Campbell & Ziff 1978). In the latter systems, 
computer simulations based on the laws of vortex dynamics (Schwarz 1988) have shed 
light on the problem of the superfluid vortex tangle. It is the case of simple but non- 
equilibrium flows, like the flow between two rotating concentric cylinders (Donnelly & 
Lamar 1988) Taylor-Couette flow), which is our concern here. In fluid mechanics the 
study of Taylor-Couette flow has led to many advances, from G. I. Taylor's successful 
application of linear stability theory, which established a firm ground for the use of the 
Navier-Stokes equations and the no-slip boundary conditions, to more recent 
understanding of transitions and nonlinear behaviour (Di Prima & Swinney 1981). 

The most generally accepted equations for the macroscopic motion of helium I1 are 
the Hall-Vinen-Bekharevich-Khalatnikov equations (Hall 1960 ; Hall & Vinen 1954 ; 
Bekharevich & Khalatnikov 1961 ; Khalatnikov 1965), hereinafter referred to as the 
HVBK equations. The HVBK equations, derived in final form by Hills and Roberts 
(1977), generalize Landau's two-fluid model to take into account the presence of 
quantized vorticity. Although these equations have been tested experimentally, in 
general these tests have hitherto only been of linear perturbations around simple basic 
states. There is also some doubt as to the most appropriate boundary conditions which 
should be used with the HVBK equations (Hills & Roberts 1977). 

Despite the early pioneering attempts of Chandrasekhar & Donnelly (1957) and the 
work of Snyder (1974) to use the HVBK equations to study the superfluid 
Taylor-Couette problem, contact between theory and experiments is very recent. 
Swanson & Donnelly's measurements (1991) of the speed of rotation of the inner 
cylinder at which toroidal motion begins have confirmed the predictions of Barenghi 
& Jones (1988) and Barenghi (1992) based on the HVBK theory. What Barenghi and 
Jones have calculated is the temperature dependent critical velocity SZ,, at which the 
Couette azimuthal motion becomes unstable to infinitesimal axisymmetric per- 
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turbations of axial wavenumber k,. Further support of the theory results from the 
more recent works of Bielert (1993) and of Barenghi, Swanson & Donnelly (1994) in 
the case of counter-rotating cylinders. The success of the linear stability theory has 
opened the way to study the development of the flow above onset. The aim of this 
paper is to present the first investigation of nonlinear superfluid Taylor-Couette flow. 
The question which we address is very simple: what is the configuration of the vortex 
lines above Q,,? Are the vortices still predominantly in the axial direction, as they are 
before the onset of instability, or are they churned into vortex-ring structures, with a 
large, predominantly azimuthal vorticity ? 

To appreciate why, until now, this simple question was still without an answer, one 
should consider the problem of flow visualization. In the classical Taylor-Couette case 
the flow pattern is no mystery. The introduction of flakes or other small particles in the 
working fluid (usually water or oil) is enough to make the Taylor cells visible to the eye. 
In the helium case, flow visualization at temperatures around two degrees above 
absolute zero is much harder. Recently, attempts have been made (Bielert 1993) to 
reveal the flow pattern by the addition of small particles. It is also possible to detect 
the position and the orientation of the quantized vortex lines. This is done by using a 
form of wave motion in superfluid helium, second sound, which directly probes the 
vorticity. In principle, simultaneous measurements of the attenuation of second sound 
along the axial, azimuthal and radial directions between the cylinders should disclose 
the vortex pattern and answer the question which we have addressed. In practice the 
information obtained is less complete than this, but hopefully the theory can guide the 
experimentalists and suggest exactly which measurements need be done. 

While solving this problem, we seek at the same time a full validation of the 
nonlinear HVBK equations and their boundary conditions. The importance of the 
HVBK equations is that they are the fundamental equations of two-fluid hydro- 
dynamics in the most general, rotational case. 

Confidence in the HVBK equations should lead to their use in the study of helium 
flow problems which are still unsolved. For example, the computer simulations of the 
vortex tangle give vortex configurations which depend, even at small Reynolds 
numbers just above onset, on the assumed normal fluid velocity profile in the channel 
(Aarts & de Waele 1994). The HVBK equations, on the contrary, determine the normal 
fluid velocity in a consistent way. 

2. Themodel 
We use cylindrical coordinates ( r ,  q5, z )  and consider superfluid helium at temperature 

T contained between two concentric cylinders of inner radius R,  and outer radius R,. 
The outer cylinder is held fixed and the inner cylinder rotates at constant angular 
velocity a,. We make the usual simplifying assumption (Chandrasekhar 1961) that the 
cylinders have infinite length; this is valid only if the temperature is in the region just 
below T,, where the critical wavelength is still comparable with the size of the gap 
(Barenghi & Jones 1988; Barenghi 1992). The incompressible HVBK equations, which 
describe a macroscopic fluid containing many vortex lines, are 

a v n  PS 
a t  P 
-+ (vn*V) V" = - Vp" + V" V2 0" +- F, 

-+(v~.V)V~ avs  = -VpS-vs T--F,  P" 
at P 
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where un and us are the normal fluid and superfluid velocities, p n  and ps are the normal 
fluid and superfluid densities, p = p n  +ps is the total density of helium, os = V x us is 
the superfluid vorticity, ds = os/losl, p n  and p s  are effective pressures, un = p/p" is the 
normal fluid kinematic viscosity, p is the helium viscosity, us = (I'/47r) log (bola,) is the 
vortex tension parameter where a, is the vortex core radius, b, is the intervortex spacing 
and T is the quantum of circulation. The mutual friction force (Barenghi, Donnelly & 
Vinen 1983) is 

H =  + B d S x ( o S  X ( U ~ - V S - u S V X d ~ ) ) + ~ B l O ~ X  (Un-US-vsV x d " ) ,  (4) 

where B and B' are the mutual friction coefficients, and the vortex tension force 
-us  T is given by 

T =  O " X ( V X ~ ~ ) .  ( 5 )  

A solution of the HVBK equations which is stable at low rotation rate is the Couette 
velocity profile un = us = DO = (ar + b / r )  P,, where C, is the unit vector in the azimuthal 
direction and the parameters a = -52, R:/(RE- R:) and b = 52, Ri R i / (R i -  Rq) are 
chosen to satisfy the boundary conditions v:(r = R,) = 52, R,  and $(r = R,) = 0.  This 
Couette state corresponds to vortex lines of uniform density 

no = 2lal/I', (6)  

aligned along the axis of rotation. It is convenient to make the equations dimensionless 
by introducing a lengthscale based on the gap width 6 = R, - R,  and a timescale S 2 / u n  
based on the normal fluid diffusion. The solution of the HVBK equations is then 
determined by the radius ratio 7 = R , / R ,  and the Reynolds number Re, = 52, R,  6/un .  

To investigate the nonlinear solution above onset we write the total velocity fields as 
upot = un+u0 and ufot = uS+uo. It is convenient to introduce the stream functions p 

for which equations (3) are automatically satisfied. We solve the equations for the 
azimuthal velocity components z$ and v$ and for the potential vorticities Zn = w;/r  = 
(V x u"),/r and Z s  = w i / r  = (V x u")Jr, obtained by taking the curl of (1) and (2). 
These equations have the form 

av?1 -- - L , Z n + N l ,  A =  L,v;+N2,  a z n  

at a t  

avs -- - N,, A =  N4, a z s  

at at (9) 

and must be accompanied by the relations between stream functions and vorticities 

L,,  L ,  and L ,  are linear operators defined by 
z n + L , p  = 0, Z S + L , ? y  = 0. (10) 
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where x = r - y/(l  - y), and N,, N,, N3 and N4 are the nonlinear quantities : 
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where 

and p = vs/un. 
To solve equations (8) and (9) we need boundary conditions. These conditions are 

not determined by the HVBK equations themselves ; ultimately the correct boundary 
conditions are a matter to be decided by experiments, and there is at present no 
universal agreement about what these conditions should be. It is conceivable that the 
appropriate boundary conditions may vary in different experimental situations, e.g. 
different temperature regimes. One of the aims of this work is to investigate which 
boundary conditions give results in best agreement with Taylor-Couette experiments. 

The normal fluid is viscous and satisfies no-slip boundary conditions un = 0 at the 
walls, which imply 

(18) 
a$n 
ar 

v; = l j ln = - = 0 at r = R, and R,. 

Equation (18) determines the solution of the normal fluid equations, which are of sixth 
order. In distinction to the normal fluid, the superfluid is inviscid; a first condition for 
us is that there is no flow across the boundaries; 

v: = 0 at r = R, and R,. (19) 

I+P = 0 at r = R, and R,, (20) 

However these relations, which are satisfied by the choice 

are not enough to determine the solution of the superfluid problem. In fact, when the 
vertical friction and vortex tension terms are included the superfluid problem is of sixth 
order, so that three equations are required at each boundary. Equation (20) supplies one 
equation so two further equations are required. The further boundary conditions we 
apply on the curved walls are 

w i  = 0 at r = R, and R,, 
v; = 0 at r = R, and R,. 

Note that (22) implies that the angular velocity of the superfluid is the same as that of 
the cylinders at r = R, and R,. These conditions have a number of advantages. 
Equations (22) and (20) imply that the superfluid velocity at the walls is only in the 
axial direction. Equations (21) and (22), which is equivalent to 6 ~ ;  = 0, imply that the 
vorticity is also purely axial at the walls. In consequence, the velocity and the vorticity 
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at the walls are parallel, so there is no mutual friction at the boundaries. Since the 
vorticity is purely axial at the walls these boundary conditions are consistent with the 
Couette state, in which all the superfluid vorticity is in the axial direction up to the wall. 

Our numerical experience suggests that this lack of mutual friction at the boundaries 
is very advantageous. Indeed, other boundary conditions which we have tried to 
impose, which have (often large) mutual friction near the walls, have led to codes which 
failed to converge. 

Various other boundary conditions have been proposed in a number of different 
contexts (Hills & Roberts 1977; Andronikashvili & Mamaladze 1966). There is a 
‘smooth boundary’ condition in which the superfluid vortices can slip freely on the 
surface, so that vortices terminate normal to the wall, giving 

m s x n = o  

where A is the unit vector normal to the wall. Taylor-Couette solutions using this 
boundary condition had large mutual friction at the boundary, which led to numerical 
instability. Possibly, adopting (23) leads to a boundary-layer structure which we were 
unable to resolve. 

‘Rough boundary’ conditions in which the superfluid vortices are pinned to the 
curved walls are also conceivable. This suffers (possibly more severely) from the same 
problems as the smoth condition: a large mutual friction force developing at the 
boundary which cannot be handled numerically. Boundary conditions corresponding 
to partial slipping have also been discussed. Their drawback is that they require the 
knowledge of the slipping parameters. 

We have integrated equations @)-(lo) together with boundary conditions (18)-(22) 
numerically, and have found well-converged solutions tending towards a nonlinear 
steady state with a number of different numerical schemes. 

A difficulty, however, arises in using the boundary conditions (18)-(22) to solve the 
linear problem. The problem is that the terms containing the high-order radial 
derivatives disappear during the linearization process. In consequence, the linear 
problem is only second order in r, not sixth order. This second-order problem only 
requires one boundary condition at the curved walls, which is of course (20), and was 
the one solved satisfactorily by Barenghi & Jones (1988) and Barenghi (1992). The 
values of u; and u$ are then determined by the differential equations and cannot be 
assigned arbitrarily. How then are we to apply (21) and (22)? The numerical values of 
u$ and u; at the boundaries emerging from the linear solutions are small but non-zero. 
The solution to this difficulty must lie in the formation of a nonlinear boundary layer, 
whose lengthscale is dependent on the amplitude of the solution. The nonlinear terms 
involving the large radial derivatives should be restored; if the boundary-layer 
thickness scales with a negative power of the amplitude, this boundary layer will serve 
to being the values of w$ and v; down from their ‘mainstream’ value to zero at the 
boundary. We have not computed this nonlinear boundary layer in detail. We surmise 
that it cannot greatly affect the mainstream solution, since the form of our nonlinear 
numerical solutions 5 % above critical are not very different from the form of our linear 
solutions. Physically, the significance of this nonlinear boundary layer is that it forms 
the region in which the vortex lines are made purely axial at the boundary. 

One can ask what is the evidence for the Couette flow as the basic state from an 
experimental point of view. The answer is that at small angular velocities the 
attenuation of second sound is found to be proportional to Q, (Swanson & Donnelly 
1991), which is in agreement with (6). Moreover, as pointed out by Barenghi & Jones 
(1988), an alternative basic state solution of the HVBK equations is vn = vo and vs = 
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(c/Y) e$ where c is a constant. This solution, in which the superfluid is in potential flow, 
would correspond to a radial temperature gradient which has not been detected. In 
conclusion, the assumption that at small rotations the flow is in the Couette state 
un = us = uo is consistent with the observations. 

However good an approximation, the Couette state cannot be an exact solution for 
a number of reasons. First, the ends of the cylinders generate a weak circulation which 
makes the bifurcation at O, = O,, imperfect; this feature is also present in the classical 
Taylor-Couette problem. Secondly, experiments show the existence of a missing row 
of vortices near the walls (Northby & Donnelly 1970). This effect cannot be properly 
taken into account by the HVBK equations, which describe only the average superfluid 
velocity field over a region containing many vortex lines. 

In conclusion the simplified model which we adopt consists of equations (8b( 10) 
together with the boundary conditions (18)-(22). The solution is found by time- 
stepping from an arbitrary initial condition until a steady state is reached. We use a 
pseudospectral method based on expansions over Chebyshev polynomials in the radial 
direction and trigonometric functions in the axial one (Barenghi 1991 ; Jones 1985). 
The details of the methods will be published elsewhere. Here it suffices to say that the 
solution is tested for spectral convergence : typically we use 10 Chebyshev polynomials 
and 6 trigonometric functions. We checked that the solution obtained by time- 
stepping, decays or grows in time if the Reynolds number is below or above the critical 
value known from our previous study of the linearized HVBK equations (Barenghi & 
Jones 1988; Barenghi 1992). Another important check consists of setting the mutual 
friction coefficients B and B equal to zero, which reduces the normal fluid equation (1) 
to the Navier-Stokes equation. This allows us to compute classical nonlinear 
Taylor-Couette flow and to check our results against published values (Barenghi 1991 ; 
Jones 1985). 

3. The results 
The results of the calculation of nonlinear superfluid Taylor-Couette flow are 

presented in figures 1-5 which show contour plots of various quantities. Each figure 
extends over one period in the axial direction; the inner boundary r = R, and the outer 
boundary Y = R, are on the left and right, respectively. The calculation is done for 
radius ratio 7 = 0.976, temperature T = 2.1 K and Reynolds number Re, = 391 ; this 
value of the driving parameter is just above (5.4%) the onset of toroidal motion at 
Relc = 371 and k,  = 1.5. Figures 1 (a)-( f )  show, respectively, the normal fluid stream 
function I,P, the potential vorticity Z", the azimuthal velocity I$, the total azimuthal 
velocity v; + vi, the radial velocity 0," and the axial velocity v,". Figure 2 shows the same 
quantities calculated for the superfluid. These can be compared with classical 
Taylor-Couette flow (Barenghi 1991 ; Jones 1985); the normal fluid flow is quite similar 
to the classical flow, although the asymmetry between the rapid outflow jet and the 
slower inflow jet is more marked than in classical Taylor-Couette flow at this radius 
ratio. The superfluid flow is radically different from the classical flow, with additional 
weak counter-rotating eddies visible in figure 2(a). These are probably due to the 
influence of the vortex tension. The intensity of the mutual friction force in the 
azimuthal direction, 4, is shown in figure 3(a) ,  whilst figure 3(b) shows the quantity 
(V x f14 which forces the vorticities. Similarly, figures 3 (c) and 3 ( d )  show the vortex 
tension terms - -Bq and -p(V x T)+. 

We are now ready to answer the question which we have addressed concerning the 
spatial configuration of the vortex lines. The superfluid vorticity field contains the 
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FIGURE 1. Normal fluid: (a) stream function p; (b) potential vorticity 2"; (c)  azimuthal velocity 
u;; (d) total azimuthal velocity $ + u ; ;  (e) radial velocity u:; 0 axial velocity u:. 

FIGURE 2. Superfluid: (a) stream function @; (b) potential vorticity Zs; (c)  azimuthal velocity u;; 
( d )  total azimuthal velocity u$+u;; (e)  radial velocity u:; (f) axial velocity u:. 

information which we need, because the local density of vortex lines in the direction of 
a unit vectorp is given by ( O & ~ . ~ ) / T .  Figure 4 shows the three components of the total 
vorticity of the superfluid. The peak values are approximately = 120, lo&l = 
690 and I w ; , ~ ~ ~ ~  = 19. It is also interesting to compute mean values, averaged over a 
Taylor cell of length 27r/k. Given any quantity f =Ar,z) we define its mean value as 

(f) = In'* 0 dz rz f i r ,  z )  dr /( dz lI r dr). (24) 
Rl 
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FIGURE 3. Mutual ,,,ction force and vortex tension force: (a) 5; (6) (V x F)+; 
(4 -& (4 -P(V x TI+. 

(4 (b) (4 

FIGURE 4. Total superfluid vorticity: (a) u;, , ,~;  (6) u ; , ~ , ~ ;  (c) u ; , ~ ~ ~ .  

We find ( I w ; , ~ , ~ ~ )  = 44.64, (Iw&l) = 386.25 and ( [ w ; , ~ , ~ ( )  = 5.02. Ifwecompare these 
numbers with the total amount of vorticity 2 la1 = 386.25 in the Couette state, in which 
the vortex lines are aligned along the axis or rotation, we conclude that the vortices are 
still predominantly in the z-direction and that the deflection along $J is small. Figure 
5 shows explicitly the direction fields of the vortex lines in the ( r ,  z)-plane at Reynolds 
numbers of Re,, = 371 and Re, = 391, respectively. The result that (l~;,~,~l) = 2)al 
exactly, is a consequence of the boundary condition (22) and is a test of the numerical 
calculation. Equation (22) implies that the vorticity in the axial direction can only be 
rearranged by the Taylor instability, its total amount being fixed by the rotation rate 
of the cylinders. 
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(a) (b) 
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FIGURE 5. Vortex lines direction field in the ( r ,  z)-plane: (a) in the Couette state at Re,, = 371 ; 
(b) in the Taylor-Couette state at Re, = 391. 

We now relate our computed results to the observations. Swanson & Donnelly 
(1991) measured the attenuation a+ which second sound, travelling in the azimuthal 
direction, suffers owing to the presence of quantized vorticity. At very small Reynolds 
number, they found a+ = 0, thus confirming the existence of a vortex-free state already 
observed in the case of equilibrium flow in a rotating annulus (Bendt 1967). This 
vortex-free state extends up to the Reynolds number Re: at which vortices appear in 
the system. Theoretical predictions of Re: in this non-equilibrium flow are not in 
complete agreement with the recent observations (Swanson 1992 ; Swanson & Donnelly 
1987), but this issue does not concern us here because we can apply the HVBK model 
only at Reynolds numbers larger than Re:. At Re, > Re:, Swanson & Donnelly 
observed that the attenuation is linearly proportional to Re,. This is consistent with our 
assumption that the superfluid is in the Couette state with uniform vorticity because 
2 la( is proportional to Re,. If Re, is further increased, eventually a critical value Re,, 
is found at which the curve a+ us. Re, exhibits a break. This measured value of Re,, is 
in agreement with our prediction that Couette flow becomes unstable (Barenghi & 
Jones 1988; Barenghi 1992). At values of Reynolds number higher than Relc helium is 
in Taylor flow. Swanson & Donnelly determined that the second sound attenuation is 
still linearly proportional to Re,, but the slope is higher than at values of Reynolds 
number below the break at Re,,. To understand this observation and to relate the 
results of our calculation to the measurements, we need a model of how second sound 
interacts with the vortex lines. Let us consider a simple configuration in which the 
superfluid has constant vorticity 2 0  due to rotation at angular speed 52 in the direction 
0 = (m,, m,, m3) where m,, m, and m3 are directional cosines. Neglecting viscous 
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dissipation, the wave equation is obtained by linearizing the HVBK equations together 
with the laws of conservation of mass and entropy; one finds 

where 4 = vn-vS and c2 is the second sound speed. Equation (25) shows that the 
attenuation is determined by the first mutual friction coefficient B ;  the second 
coefficient B' is only a correction to the Coriolis force and modifies the coupling of 
transverse modes already introduced by the rotation. Let us suppose that the wave has 
frequency a and propagates in the x-direction with dependence exp(iat - ikx). The 
quantity OJa is usually very small. For example, at the temperature T = 2.1 K, using 
the dimensions of Swanson & Donnelly's apparatus (gap width S = 0.0474 cm, height of 
the cylinders h = 9.436 cm), at Reynolds number Re, = 391 we find that SZ/a = 
0.10 x for the fundamental axial and radial mode, respectively. At 
first order in OJr, it follows from (25) that k = a/c2 -ia, where a, is the attenuation 
coefficient in the x-direction : 

(26) 
Note the dependence of the attenuation in the direction 1 on the directional cosines of 
directions 2 and 3. For example if the vortices are transverse to the direction of sound 
and m2 = 1 ,  m3 = 0, then the attenuation a, = BQ/2c2 is maximum; if they make an 
angle 8 with this direction then m, = sin 8, m3 = 0 and a, = BSZ sin2 8/2c,. This last 
dependence of the attenuation on 8 has been verified experimentally (Swanson & 
Donnelly 1987). 

Now equation (26) for the attenuation was derived on the assumption that the 
vorticity is a constant vector o. To make use of (26) in our problem we assume that 
the components of this vector o have values w, = ( I w ; , ~ , J )  = 44.6, wo = ( I w ; , ~ , J )  = 
5.0, and w, = ( I W ; , ~ , J )  = 386.25. Note that we use the absolute values of the vorticity 
because second sound cannot discriminate the sense in which the vortex lines point. 
The attenuation in the azimuthal direction is then proportional to lul(mi +mi)  = 
(0," + wz)/lwl. We have seen already that, owing to the boundary condition v i  = 0, the 
average axial vorticity in Taylor flow is the same as in Couette flow: w, = 2 /al. Since 
the transition to Taylor cells is a pitchfork bifurcation, we expect that the amplitude 
of the nonlinear solution to be proportional to (Re,-Re,,)i close to the critical 
Reynolds number. Hence both 0," and w$ will be proportional to (Re,-Re,,) near 
critical, so 

(27) 
where K is some constant. Equation (27) explains why the second sound attenuation 
is linearly proportional to Re, even in the Taylor flow regime, as observed by Swanson 
& Donnelly. 

We now compare the observed values of the attenuation with the experiment. From 
the previous discussions, we have that the attenuations of second sound travelling in 
the azimuthal, radial and axial directions are respectively 

and 0.51 x 

a, = BO(mi + m3/2c2 .  

a. E 2 la( (1 + K(Re, -Re,,)), 

In the Couette flow state at the critical 

B w 2 + w 2  
01 - - 7 2  = 391.3, 
- 2c, 101 

where lo( = 386.3. 

Reynolds number the attenuations are 
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respectively a: = 2la"l = 366.5, a; = 2la"l = 366.5 and a," = 0. Thus a, suffers the 
largest relative change in the transition from Couette to Taylor flow. This is consistent 
with Swanson & Donnelly's report (1991) that the percentage change in attenuation is 
greater for the axial resonance mode than for the azimuthal one. 

Swanson & Donnelly also present a graph of ( = A / A , -  1 us. Re at T = 2.1 K, 
where A and A ,  are the amplitudes of the resonances of a second sound azimuthal 
mode measured with and without vortices. Thus ( is proportional to the attenuation 
coefficient a$. The graph shows a break of the slope of ( us. Re, around Relc = 336, 
which corresponds to the onset of toroidal motion; at this point we read 5' = ('(Re, = 
336) = 0.25. We can also read that 5.4% above onset ((Re, = 354) = 0.28, so the 
relative change is small: ([-(')/(' = 12 YO only. This value should be compared with 
the relative change (a4 - a$)/.$ = 6.8 O h  which results from our calculation at Reynolds 
numbers 371 and 391 at T = 2.1 K of figures 1-5. We conclude that our nonlinear 
calculation of the attenuation is in order-of-magnitude agreement with the experiment. 
The value ( = 0.28 is probably an upper bound since it is obtained from the line which 
fits the data at high values of Re, and there is usually some rounding of the attenuation 
near the onset. In addition the attenuation measured will depend on the detailed spatial 
structure of the mode used to probe the flow. Figure 5(b) shows the direction of the 
vortex lines in the (r,z)-plane at Re, = 391. It can be seen that the vorticity in the z- 
direction is higher near the walls whilst the vorticity in the r-direction is higher in the 
centre of the cells. 

5 .  Conclusions 
We conclude that for the first time we have solved the nonlinear HVBK equations 

and determined the finite-amplitude solution above the critical velocity at which 
Couette flow becomes unstable. We find that in our axisymmetric flow satisfactory 
results are obtained when the boundary conditions on the superfluid at the cylinders 
are taken as u; = u; = 0, which implies that the superfluid vorticity and velocity are 
both purely axial there. 

These investigations have so far only treated the mildly supercritical regime and here 
we have found that the quantized vortex lines are still predominantly aligned along the 
axis of rotation as in the Couette state, and that the deflection in the azimuthal 
direction is smaller than radial deflection. The pattern of the normal fluid flow is 
broadly similar to that found in classical Taylor-Couette flow, but the pattern of the 
superfluid flow is markedly different; instead of a meridional flow consisting of a single 
pair of cells in each period, we find a more complex pattern of eddies and counter- 
eddies. 

The results have been interpreted in terms of the effects on the attenuation of second 
sound propagating in the three orthogonal directions. Comparison with the existing 
measurements shows there is order of magnitude agreement between the theoretical 
and experimentally observed change in azimuthal second sound attenuation. However, 
a more detailed analysis of the attenuation found in the experiments will be necessary 
before detailed quantitative agreement can be found. 

This research is supported by SERC grant number GRIH38003. 
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